

Soil Acidity in Sandy Soils of the North West & Free State Provinces

Kobus van Zyl 22 May 2019

Content

- North West and Free State provinces
- Historical information of Free State province
- Reasons for dramatic deterioration of top- and subsoil acidity
- Nitrogen management
- Soil acidity on water table soils
- What happens in the field?
- Soil acidity indicators in the North West and Free State
- Summary

North West and Free State provinces

Historical findings (2002-2015) in the Free State

- The median pH(KCl) of the topsoil deteriorated by 0.17 pH units to a pH of 4.23
- The median acid saturation (%) increased by 92% in the topsoil
- The median subsoil pH(KCl) decreased from 4.25 to 4.15
- The median acid saturation (%) increased by 39% in the subsoil

Fourie and Bornman, 2015

Historical findings (2015-2018) in the Free State

- The median pH of the subsoil remains less than 4.2
- The median acid saturation(%) increased since 2015 with a further 13%
- Basic cation loss is also evident
 - Calcium loss from the subsoil was 15% since 2002
 - Magnesium loss from the subsoil was 20% since 2002

Bornman, 2018

Three year rolling averages of key soil analyses values indicating acidification of the subsoil of the Free State Province (from 2002 to 2018)

Reasons for acidification

- Ineffective use and leaching of nitrogen
- Nitrogen sources (ammonium nitrate and urea)
- Tillage practices
- Contribution of different soils and soil clay content
- Irregular and insufficient liming of the topsoil
- Increased nitrogen rates
- Crop removal of Ca and Mg

Nitrogen management

Urea hydrolysis at pH 6.5 – 8.0

$$CO(NH_2)_2 + H^+ + 2H_2O \stackrel{\text{urease}}{\rightleftharpoons} 2NH_4^+ + HCO_3^-$$

Urea hydrolysis at pH < 6.5

$$CO(NH_2)_2 + 2H^+ + 2H_2O \rightleftharpoons 2NH_4^+ + H_2CO_3$$

Nitrogen management

Nitrification

Nitrite
$$2NH_4^+ + 3O_2 \rightarrow 2NO_2^- + 4H^+$$

Nitrate
$$2NO_2^- + O_2 \rightarrow 2NO_3^-$$

Soil acidity on water table soils

Soil acidity on water table soils

	Ca(mg/kg)								Mg(mg/kg)					
			6									2		
157	144	150	160	159	151	157		49	43	48	51	54	51	41
212	244	193	189	211	215	219		63	69	67	65	68	62	48
157	127	161	178	166	183	126		45	36	44	52	48	49	38
128	103	136	161	117	112	138		41	32	42	42	44	49	39
131	128	136	153	150	100	121		48	39	49	54	61	49	35
139	117	126	120	151	144	174		43	37	38	40	50	46	45
	< 100	100 - 150	150 - 200	200 - 250					< 30	30 -50	50 - 70	70 - 90	90 - 120	120 - 150

Analysis	Original soil sample	3-4 years after liming			
pH(KCI) topsoil	5.5	5.3			
pH(KCI) subsoil	4.52	5.2			
Ca(mg/kg) topsoil	187	412			
Ca(mg/kg) subsoil	167	428			
Mg(mg/kg) topsoil	52	96			
Mg(mg/kg) subsoil	54	96			

pH(KCI) of North West and Free State sandy soils

Acid Saturation (%) of North West and Free State sandy soils

Ca(mg/kg) of North West and Free State sandy soils

Mg(mg/kg) of North West and Free State sandy soils

Summary

- Lime the soil and fertilize the plant
- Subsoil acidity is not easy to rectify and will take time
- Monitor regularly at least once ever 3 years or more frequent
- Effective liming= effective utilization of nutrients, soil moisture and a healthy soil biological system
- We need effective and healthy plant roots
- Strive for consistent and sustainable results
- How do we manage nitrogen to avoid subsoil acidity?

