# Principles of Soil Acidity, Liming, Calcium and Magnesium Nutrition









ARC - Soil, Climate and Water

## This presentation ....

- 1. What, precisely, is the problem?
- 2. Impact on plant growth
- 3. Correction







# Causes of soil acidity

#### • Natural:

- high rainfall (leaching of bases) over long time periods (older land surfaces)
- more rapid in well drained sands than in moderately and poorlydrained loams and clays

#### Man-induced:

- > ammonium fertilizers
- removal of nutrients in harvests and by animals (milk & meat)
- > tillage (oxidation of organic matter)
- > industrial pollution
- ➤ forestry



# Most plants can grow at very low pH in nutrient solution culture!

...so what <u>exactly</u> is the problem?

















# Aluminium as the primary factor in soil acidity effects on plant growth....

- First reported in **1918** (Hartwell and Pember, 1918. *Soil Science*)
- But...Beckman's breakthrough (1934) with pH electrode technology detracted from further Al research!
- Role of Al 'rediscovered' by Reeve & Sumner (South Africa) and Kamprath (USA) in the 1970's.
- Superiority of Al saturation as an index of soil acidity highlighted in field trials of Farina (1970 – 1990).
- Brazilian work from 1970's to date similar findings.
- Australian research on wheat confirmed that Al superior to pH as a predicative index.

## Diagnostic criteria using soil tests

Ratio of exchangeable Al to total cations (a convenient 'proxy' for Al activity) most reliable predictor

Acid Sat % = 
$$\frac{Al+H}{Ca + Mg + K + Al+H}$$
 X 100

# What about manganese toxicity?

A frequent problem in soils that are not inherently acidic following acidification by agricultural practices!



### **Manganese Toxicity**

- Less widespread than Al toxicity.
- May occur at higher pH's than Al toxicity.
- Usually not a problem on highly weathered, naturally acidic soils (Mn leached out!)



Mn toxicity - most severe under reducing conditions created by water-logging and compaction







#### Pongola and Inanda topsoils



# 2. Effects of acidity factors on plant growth



highly sensitive

moderately sensitive

moderately tolerant

highly tolerant

#### **Pastures**

lucerne / white clover perennial ryegrass

red clover, barley

**Italian ryegrass** 

cocksfoot

tall fescue

Digitaria eriantha, oats

kikuyu Eragrostis curvula

#### **Crops**

sunflower dry bean, cotton sorghum

maize, lupin

soyabean

potato

sweet potato

cow pea sugar cane













No lime

6 t/ha lime

















### Highly sensitive

Tentative ranking of tolerances to excess

### Manganese

(based on literature reports)

Note: large cultivar differences occur

Moderately sensitive

Moderately tolerant

Highly tolerant

lucerne, cabbage, tobacco, potato, pineapple, beans soyabean, peanuts wheat

barley maize

cotton

sweet potato

sunflower

carrot, white lupin



## Manganese Toxicity



## Manganese Toxicity



# 3. Correction of soil acidity problems

- 1. Roles of <u>lime</u> and gypsum
- 2. 'Alternative and new' products







(Calcitic or Dolomitic)

## LIME

## **GYPSUM**

















### Nutrient availability and soil pH



### Important lime requirement considerations

- Lime quality (physical and chemical)
- Soil buffering (clay and organic matter contents)
- Depth of incorporation
- Crop species requirement



#### Variable soil response to liming (buffering capacity effects)



## **Economics** of soil acidity correction

R3 500

Significant increases in sugarcane yields in Australia were still being recorded **18 years** after a single application of **5 t/ha of lime**, which resulted in approximately **366 t of additional cane** relative to the unlimed treatment over the 18 year period!

(Noble and Hurney, 2000)

R146 400

= **R4083% return** (227% /yr)

# 'Enhanced efficiency' liming and gypsum products

- **>**Granular
- **≻**Liquid
- **≻**Microfine









## Micro-fine liquid and pelletized (granular) limes

#### Frequent claims

- Faster reaction ✓
- Application advantages



#### **Liquid Lime**

One gallon of liquid lime = 1340 pounds of ag lime. Liquid Lime is a super high concentration of limestone that is easy to use.

- Mobile through the soil profile X
- Vastly lower rates have the same effect as tons of conventional lime on pH etc X
- Ca highly available relative to conventional limes X

Evidence is that lime granules remain intact in the soil for very long periods after application.





### Pelletized / granular lime research reports....

| Reference                                     | Conclusions                                                                                                                                                                                                     |
|-----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Lollato et al., 2013 Soil<br>Sci Soc Amer J.  | <ul> <li>pellets intact more than 220 d after application</li> <li>failed to significantly increase soil pH</li> <li>failed to decrease soil Al</li> </ul>                                                      |
| Murdock, 1997. Univ of<br>Kentucky            | Pelletized lime reacts <u>no faster</u> than conventional lime.                                                                                                                                                 |
| Damon et al.,2018.<br>Australia               | Pelletized lime: <u>no effect on pH and Al</u>                                                                                                                                                                  |
| Dreyer, unpublished report, NW University, SA | <ul> <li>granular <u>not as effective</u> at increasing soil pH as conventional lime.</li> <li>granular <u>not mobile</u>.</li> <li>granules <u>undissolved after 3.5 months</u> in moist acid soil.</li> </ul> |

# Worrying: the naïve (dishonest?) marketing approaches frequently used...

- 1. <u>Dairy farmer, KZN</u>: use granular lime at ¼ rate as substitute for conventional lime!
- 2. <u>Maize/soya farmer in Mpumalanga</u>: limed to zero acid sat, spent R200000 on granular lime 'to supply Ca'.
- 3. Sugarcane farmer in Komati: soil Ca levels of 4000 ppm, supplying liquid lime through drippers 'to correct Ca deficiency...' (Clogged drippers..!!!)



### Concluding thoughts

### Soil Acidity .....serious or not?

 Serious? Yes, impact on yields can range from moderate to devastating

#### **BUT**

- Cause: well known and understood
- Diagnosis: easy and reliable (soil tests)
- Correction: highly effective correction with mostly <u>natural</u> and <u>benign</u> products
- Economics of correction: generating it out!!!

  favourable

  So let's get on with sorting it out!!!