CHALLENGES FACING THE EUROPEAN FERTILISER INDUSTRY

AND THE RESPONSE OF INDUSTRY IN ADDRESSING THESE CHALLENGES
INTRODUCTION

- Challenges are varied and complex
- Present on multiple levels
- Some specific to EU context, while others are more general to the international scenario
 - Active in global trade flows & full exposure to global market forces
GLOBAL CONSIDERATIONS

- Biggest challenge: structural overcapacity of the market (IFA, 2017)
- Ongoing expansion projects to ↑ capacity
 - Capacity growth in all segments are expected: nitrogen, +7%; phosphate rock, +10%; potash, +20% from now to 2020 – IFA, 2017
- Persistent oversupply
- Coupled with a regional weakening demand
 - Contingent on low crop prices, unfavourable public policy & sub-optimum growing conditions
- ↑ Global demand
 - 1.3% year on year growth to 200 million tons by 2020
 - Regional growth only
 - Premise of growth based on macro demographic principles
MACRO DEMOGRAPHIC PREMISE

2,750 kcal/per capita per day

3,130 kcal/per capita per day

+13.8%
MACRO DEMOGRAPHIC TRENDS

Median age (years)

<table>
<thead>
<tr>
<th>Country</th>
<th>2010</th>
<th>Changes in median age</th>
<th>2060</th>
</tr>
</thead>
<tbody>
<tr>
<td>CY</td>
<td>34.2</td>
<td></td>
<td>50.1</td>
</tr>
<tr>
<td>SK</td>
<td>37.2</td>
<td></td>
<td>53.0</td>
</tr>
<tr>
<td>PL</td>
<td>38.0</td>
<td></td>
<td>53.8</td>
</tr>
<tr>
<td>RO</td>
<td>38.5</td>
<td></td>
<td>53.1</td>
</tr>
<tr>
<td>PT</td>
<td>41.0</td>
<td></td>
<td>55.1</td>
</tr>
<tr>
<td>ES</td>
<td>40.2</td>
<td></td>
<td>54.0</td>
</tr>
<tr>
<td>MT</td>
<td>40.2</td>
<td></td>
<td>52.4</td>
</tr>
<tr>
<td>HU</td>
<td>39.9</td>
<td></td>
<td>50.7</td>
</tr>
<tr>
<td>BG</td>
<td>42.4</td>
<td></td>
<td>53.0</td>
</tr>
<tr>
<td>LT</td>
<td>38.7</td>
<td></td>
<td>49.2</td>
</tr>
<tr>
<td>CZ</td>
<td>39.5</td>
<td></td>
<td>50.0</td>
</tr>
<tr>
<td>IT</td>
<td>43.3</td>
<td></td>
<td>53.6</td>
</tr>
<tr>
<td>GR</td>
<td>41.8</td>
<td></td>
<td>51.8</td>
</tr>
<tr>
<td>DE</td>
<td>44.3</td>
<td></td>
<td>54.0</td>
</tr>
<tr>
<td>SI</td>
<td>41.5</td>
<td></td>
<td>51.1</td>
</tr>
<tr>
<td>EU27</td>
<td>40.1</td>
<td></td>
<td>49.3</td>
</tr>
<tr>
<td>IE</td>
<td>34.3</td>
<td></td>
<td>43.1</td>
</tr>
<tr>
<td>LU</td>
<td>38.9</td>
<td></td>
<td>47.0</td>
</tr>
<tr>
<td>AT</td>
<td>41.8</td>
<td></td>
<td>49.1</td>
</tr>
<tr>
<td>EE</td>
<td>40.5</td>
<td></td>
<td>47.1</td>
</tr>
<tr>
<td>LV</td>
<td>41.2</td>
<td></td>
<td>47.7</td>
</tr>
<tr>
<td>NL</td>
<td>40.8</td>
<td></td>
<td>46.9</td>
</tr>
<tr>
<td>UK</td>
<td>39.8</td>
<td></td>
<td>44.3</td>
</tr>
<tr>
<td>BE</td>
<td>41.1</td>
<td></td>
<td>45.4</td>
</tr>
<tr>
<td>FR</td>
<td>40.0</td>
<td></td>
<td>44.0</td>
</tr>
<tr>
<td>FI</td>
<td>42.0</td>
<td></td>
<td>45.1</td>
</tr>
<tr>
<td>DK</td>
<td>40.6</td>
<td></td>
<td>43.2</td>
</tr>
<tr>
<td>SE</td>
<td>40.7</td>
<td></td>
<td>42.4</td>
</tr>
<tr>
<td>China</td>
<td>34.6</td>
<td></td>
<td>49.2</td>
</tr>
<tr>
<td>Japan</td>
<td>44.9</td>
<td></td>
<td>57.6</td>
</tr>
<tr>
<td>Russia</td>
<td>38.0</td>
<td></td>
<td>46.4</td>
</tr>
<tr>
<td>India</td>
<td>25.5</td>
<td></td>
<td>32.2</td>
</tr>
<tr>
<td>USA</td>
<td>37.1</td>
<td></td>
<td>40.3</td>
</tr>
</tbody>
</table>
LAND USE IN AGRICULTURE EU-28

Land use in agriculture between 2000 – 2015 in the EU-28

- No data for Bulgaria in 2005; no data for Italy in 2009
- Data source: Eurostat

Percentage decrease in agricultural area from 2000 – 2012 in the EU-28
FERTILISER CONSUMPTION TRENDS

Estimated consumption of mineral fertilisers in agriculture in the EU-28 (2006-2015, million tons of nutrients)

- Slowing enlargement, less accession funds & standard EU policy
- Commodity fertiliser consumption will remain constant/decrease

Source: Eurostat, 2016
ACCESS TO RAW MATERIALS

- Raw materials constitute 80% of production costs in manufacturing of commodity fertilizers
- EU characterised by many smaller manufacturers
 - Lack economies of scale to integrate to upstream activities
 - Purchases made through contract-based pricing: affected by ↑ price, price volatility & delicate geopolitics
- Unfavourable policies lead to ↑ in production costs
 - Difficult to relay costs to end-user
- While extra-EU manufacturers benefit from local feedstocks & favourable policy
 - Drive opening of new extra-EU manufacturing facilities & export hubs
- EU competitiveness could be further compromised
ACCESS TO RAW MATERIALS – PHOSPHATE ROCK

- No significant reserves in EU = high dependence on foreign imports for manufacturing of phosphate fertilizers
 - Availability subject to price volatility, supply disruptions & geopolitical scenarios
- Risk of supply disruptions can be caused by:
 - Concentration of reserves
 - ↑ Oligopolistic/monopolistic trends
 - Political turmoil
 - ↑ Reliance on Moroccan imports
- Vertical integration of P supply chains
 - Supply of finished products rather than raw materials
- Listed as ‘critical raw material for the EU’
EU PUBLIC POLICY AND DIRECTIVES

- Additional challenge: a complex set of public policies that aim to promote accountability and sustainability in the industry.

- Comprehensive set of directives and legislations aimed to protect natural resources and reduce the impact of industry on the environment.

- The agriculture industry is a major polluter & cause of environmental degradation in the EU.
 - This industry is often at the forefront of these policies.
NITRATES DIRECTIVE (1991) (ND)

- The main policy tool to ↓ N leaching from agriculture
- Member States (MS) must identify Nitrate Vulnerable Zones (NVZ)
- In some MS, the whole territory is designated as a NVZ
- NVZ is subject to mandatory national action plans
- Action plans can vary between member states
- Action plan measures can include:
 - N ceilings, restrictions on timing of application, sloping hills & wet conditions, additional buffer strips near water courses & balanced nutrition requirements
- Measures significantly ↓ applications of N fertilizers in agriculture

Annual average river nitrate concentration (mg/l NO3-N) in 2008, averaged by river basin district (Source: European Commission 2013)
FROM A POLICY PERSPECTIVE: THE EC HAS PLACED A HARD CEILING ON NITROGEN – NO MORE NITROGEN
WATER FRAMEWORK DIRECTIVE (2000) WFD

- Main policy tool to establish a good status of surface waters in EU
- Requirements on water quality with indicators for chemical status
 - Nutrients must not exceed a threshold concentration
- Concentration of nitrates from agriculture in water is an integral part of WFD
 - Threshold concentrations provided for N & P
- Goals & measures of the WFD overlap with and support the ND
CAP: COMMON AGRICULTURAL POLICY

- 40% of the EU budget & functions to support a viable EU ag-industry
- Recently, backing EU directives on environment & sustainability is a significant CAP element
- Supports congruent ag-practice at farm-gate & regional scale through 'green funding' mechanisms
 - Wider buffer strips for watercourses is an agri-environmental measure under the Nitrates Directive = Farmers are eligible for CAP payments
 - CAP ‘Cross Compliance Principal’: compensation for ↓ income for complying with EU policy
- Direct payments for providing agri-environmental services
 - e.g. Designating farmland as an ecological focus sites

Public policy is financing mechanisms that↓ production activities, ↓ land used in agriculture & ↓ use of fertilizers
OTHER RELEVANT DIRECTIVES

- Not specifically related to agriculture but affect the industry:
 - ‘The Industrial Emissions Directive’ (2010/75/EU)’ on regulating polluting emissions from industry
 - Nitrogen oxides (NOx), non-methane volatile organic compounds (NMVOCs), sulphur dioxide (SO2), ammonia (NH3) & fine particulate matter (PM2.5)
 - E.g. manufacturer requirement for energy audits in manufacturing processes to identify target points for energy savings
OUTCOMES OF DIRECTIVES

- Strong case for how directives are shaping and will continue to shape the fertiliser industry
- Some argue public policy is the most important factor limiting the growth of the industry

Public policy is pushing towards a ↓ consumption of fertiliser, while ↑ the costs of manufacturing through full pricing mechanisms internalizing the external costs on environment & sustainability

This is not working in favour of an industry struggling with growth & profitability
NEED FOR CHANGE

- Reconsider traditional dogma: ‘maximizing inputs to maximise plant yields’
 - Clearly no longer a viable approach
- Shift in focus away from ‘maximising inputs’ towards ‘optimizing inputs’
- This change represents a limit for growth by placing a cap on the use of inputs
FROM CHALLENGES TO OPPORTUNITIES

- It is in exploring and adapting to this change that EU fertiliser industry can find new pockets of opportunity
 - Change in products
 - Change in processes & raw materials
 - Change in grower
 - Change in legal frameworks
CHANGE IN PRODUCTS

- Shift from commodity fertilizers → differentiated specialty fertilizers
 - **Specialty N-based products**
 - Offer value-added products that optimize & manage N in soil
 - E.g. Slow release, urease-inhibitors, foliars, amino acids/seaweeds
 - **Specialty micro-element mixes**
 - Positioned to ↑ NUE micro- & mesoelements
 - **Increased focus on soil-specialties & soil conditioners**
 - Positioned to optimize NUE, root function & nutrient absorption
 - **Biostimulants & biofertilizers**
 - ↑ Plant efficiency, independent of nutritive element
 - ↑ Supply & availability of nutrients in the soil without adding more nutrients
 - Next blockbuster product segment – PiperJaffray, 2015
CHANGE IN PROCESSES & RAW MATERIALS

Significant opportunities for new sources of phosphorous

- Interest in manure processing for alternative high efficiency P fertilizers
 - Process innovation in solid-liquid separation, drying, composting, membrane filtration & biological treatments
 - CAP-funded group projects and trial cooperative installations
- Industry driving innovation in:
 - ↑ Efficiency of phosphate-rock processing
 - P recycling & alternative P raw materials
 - Industry targets to replace up to 15% of phosphate rock inputs with P recovered from sewage, sludge, ash & other source
EU manufacturers are not well-positioned to compete on the global commodities market

Differentiated specialty products:
- Create a more resilient EU fertiliser industry
- Price premiums & higher margins
- Alternative raw materials
 - Buffers incidence costs & price volatility of raw materials
- The SME (typical of the EU market) can find profitability in this business model

Result: ↑ offering of specialty products
CHANGE IN GROWER

- Growers ↑ willingness to pay a premium price on specialties
- Perceived to have added-value & increasingly favourable cost:benefit ratio
- Why?
 - N ceilings are real - legitimate interest in products that ↑ NUE
 - Clear monetary incentives
 - ↑ Importance of soil care & soil health – soil is considered a farm asset that needs to be managed
 - Responsiveness to the organic market segment
GROWTH IN ORGANIC FARMLAND IN EU-28 AND EUROPE

Figure 15: Growth of organic farmland in Europe, 1985-2014

Source: Lampkin, Nic, FiBL-AMI surveys 2006-2016 and OrganicDataNetwork surveys 2013-2015
CHANGE IN GROWER

- Growers ↑ willing to pay a premium price on specialties perceived to have added-value

- Why?
 - N ceilings are real - legitimate interest in products that ↑ NUE
 - Clear monetary incentives
 - ↑ importance of soil care and soil health – soil considered a farm asset to be managed
 - Responsive to the organic market segment
 - Must ↑ yield per unit area - investing in irrigation & fertigation systems
 - Requires the use of specialty fertiliser products: WSF, NPK water solubles, etc.
 - Strong tendency for protected agriculture, greenhouses & high density greenhouses
 - Requires specialty fertilisers & precision/dig-agriculture
Protected agriculture systems in the Westlands, Netherlands.
• Closed hydroponics, aquaponics, & vertical farming
• New systems will require new specialty products & specialized methods of application
• ↑ Relevance of precision agriculture - more specifically precision nutrition
• Use of digital technologies for nutrient management will become essential
On the other end of the spectrum in large-scale extensive production: precision agriculture/dig-ag will become increasingly relevant to reduce and optimize use of fertilizers & other inputs.
Emergence of new processes, products, raw materials & production systems

Current EU fertiliser regulation (EC No. 2003/2003) does not support in bringing these new solutions to market

- Narrow definition of fertiliser addresses the use of mainly mineral chemical fertilizers - only 50% products on EU market
- Specialties, such as soil improvers, biostimulants & biofertilizers, are not accommodated in this legislation
- In 2010, EC recognized the limits framework imposed on industry & embarked on revisions to EC 2003/2003
- In 2015, revisions were fast tracked by inclusion in new circular economy package
A circular economy is based on sharing, leasing re-using & recycling in a closed loop, reducing waste to a minimum.

- EU policy objectives for moving towards circular economy: ↓ pressure on the environment, security in raw materials, competitiveness, innovation & sustainable economic growth

- Initially fertilizers were not included in the original action plan

- In 2015, fertilizers were included in the final package
 - Revisions to EU fertiliser framework were identified as a priority action

From a Linear Economy...

...to a Circular Economy
NEW LEGISLATIVE FRAMEWORK (NLF)

- Innovative hybrid building-block legal model
 - Product placement in 2 categories: Component material & product function category
- Many advantages to support the industry
 - Accommodates a wider range of fertilizers
 - Easy registering of innovative products
 - Explicitly includes innovative fertiliser product segments
 - E.g. biostimulants
 - Supports production from new & domestic raw materials
- Revisions driven by the need to address most pressing industry challenges
OUTCOMES OF NLF

- A single harmonised EU fertiliser market
- Promote product differentiation & innovation
- Access to & use of new domestic raw materials
- Supply chain resilience
- Enabling regulatory environment to support in the transition towards a more competitive, resilient & sustainable EU fertiliser industry
IN SUMMARY: THE EU FERTILISER INDUSTRY IS IN A STATE OF FLUX

- Unfavorable demographics, weakened demand, access to raw materials, increased environmental costing – in response: innovation-driven differentiation to specialty fertilizers products & nutrition solutions
- In this context, we see directives as key drivers of this change
 - Posing the some of the key limitations to industry: through sustainability directives
 - But providing also new opportunities: through a financing mechanisms & revised enabling legal frameworks

Whether this will be enough to maintain and growth and competitiveness of the EU fertiliser industry, remains to be seen
THANK YOU FOR YOUR ATTENTION